

WATER TODAY. WATER TOMORROW.

Providing the sound science and support for managing Nebraska's most precious resource.

WATER SCIENCE: STREAM AND AQUIFER DEPLETION

JESSE BRADLEY, P.G., NATURAL RESOURCES PROGRAMS DIRECTOR Nebraska Department of Natural Resources

Overview

- ➤ Stream and Aquifer Depletion
 - The effects of well location on stream depletion
 - Review of well depletion zones
 - Wells in the Republican Basin through time
 - Stream depletion
 - Aquifer depletion

WELL LOCATION AND STREAM DEPLETION

Terminology:

Cone of Depression/Hydraulic Gradient

- >As a well begins to pump water from an aquifer:
 - Groundwater levels around the well decline, creating a cone of depression in the water levels around the well
 - A hydraulic gradient is now present between the normal water table and the aquifer around the well
- The hydraulic gradient established within the cone of depression forces water to move from the aquifer into the well

Effects of Well Location on the Rate of Stream Depletion

	Well A	Well B
Proximity to stream	Farther	Closer
When cone of depression reaches stream	Later	Sooner
Length of time groundwater storage is a source of water to the well	Longer	Shorter
Streamflow depletion becomes primary source of water	Later	Sooner

Questions?

REVIEW OF WELL DEPLETION ZONES

Questions?

WELLS IN THE REPUBLICAN BASIN THROUGH TIME

Questions?

STREAM DEPLETION

Stream Depletions by Well Depletion Zone

Impacts above Reservoirs Serving Frenchman Cambridge Irrigation District

Impacts 1950-1964 compared to 2000-2012

*Net = Pumping impact minus imported water

Impacts to

Frenchman Creek Subbasin

Runoff

Reduction

Impacts, 1950-1964 compared to 2000-2012

Nebraska

Stream

Zone

Nebraska

Zone

*Net = Pumping impact minus imported water

Nebraska

Zone, net*

Transitional Groundwater

Kansas

Pumping

Colorado

Pumping

Impacts to

Mainstem, Swanson to Harlan

Impacts, 1950-1964 compared to 2000-2012

*Net = Pumping impact minus imported water

Total Impacts above

Harlan County Lake

Impacts, 1950-1964 compared to 2000-2012

*Net = Pumping impact minus imported water

Total Impacts above

Harlan County Lake

Impacts, 1950-1964 compared to 2000-2012

Questions?

AQUIFER DEPLETION

Aquifer Volume

by Subbasin

- Frenchman-CambridgeIrrigation District Subbasins
- -Frenchman Creek Subbasin
- Swanson to Harlan Area

Aquifer Volume

by Subbasin

- Total above Harlan County Lake
- Frenchman-Cambridge Irrigation District Subbasins
- Frenchman Creek Subbasin
- Swanson to Harlan Area

Percent Change Since 1917

by Subbasin

- Frenchman-Cambridge
 Irrigation District Subbasins
- -Frenchman Creek Subbasin
- Swanson to Harlan Area

Decade

Percent Change Since 1917

by Subbasin

- ◆ Total above Harlan County Lake
- Frenchman-Cambridge **Irrigation District Subbasins**
- Frenchman Creek Subbasin
- Swanson to Harlan Area

Actual Aquifer Storage

by Depletion Zone

Projection* of Storage Reduction by Depletion Zone

*Trends are projected 1000 years (power function) based 1970-2015 data

Questions?

WATER TODAY. WATER TOMORROW.

Providing the sound science and support for managing Nebraska's most precious resource.

THANK YOU

JESSE BRADLEY, P.G., NATURAL RESOURCES PROGRAMS DIRECTOR

Nebraska Department of Natural Resources

402-471-2363

dnr.nebraska.gov f

